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The equation of state of a quasi one-dimensional model lipid monolayer is
obtained in analytic form. The method used is the Laplace transform approach
leading to a homogeneous Fredholm integral equation. Two cases are studied.
The first considers a purely short range repulsive potential, when we recover the
results previously obtained by Gianotti et al. (J. Phys. A.: Math. Gen. 25:2889
(1992)). The second incorporates the long range attractive Kac potential, and
the equation of state is calculated in the van der Waals limit. This extends the
approach originally developed by Kac et al. (J. Math. Phys. 4:216 (1963)).
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1. INTRODUCTION

Lipid monolayers exhibit surface-active properties due to their amphiphilic
character. The molecules forming these layers have a hydrophilic polar
head group to which one or two hydrophobic alkane chains are attached.
These monolayers may be formed at a water/oil (w/o) or at a water/air
(w/a) interface. In this work we are concerned with the latter.
These systems have received considerable attention recently (see, e.g.,

the thorough review by Kaganer et al. (1999) (1) and references therein)
partly because of their rich phase behaviour, partly for their relevance in a
number of important biological processes. (2) It has been shown experimen-
tally (1) that when the monolayer is in the so-called liquid condensed phase
the chains are either tilted with respect to the water surface or perpendicular



to it. This work is concerned with a quasi one-dimensional model to study
the tilt- no tilt transition in lipid monolayers at the w/a interface. We shall
make clear the meaning we give to ‘‘quasi’’ in the next section.
There is already a vast literature of theoretical models and computer

simulations of model quasi one- and two-dimensional lipid monolayers. (1)

Earlier work using quasi one-dimensionalmodels aremainly latticemodels.(3–5)

One exception is an earlier work coauthored by one of us (6) that presented
an off-lattice analytic solution of a quasi one-dimensional model for the tilt
no-tilt transition. The approach used in that work is that of the Laplace
transform method. (7) That work assumed short-range repulsive nearest-
neighbour interactions.
The present work extends the results of ref. 6 in two ways. First we

recover the solution of that work for either short-range repulsive or attrac-
tive nearest-neighbour interactions using the Fredholm’s homogeneous
integral equation which yields the analytic solution to this problem. In the
process we correct misprints present in Eqs. (3.4) and (3.5) of ref. 6. The
second, and most important, part of this work adds the attractive Kac
potential (8) to the interaction between the molecules of the model lipid
monolayer. We shall show below that the equation of state is then obtained
analytically in the so-called van der Waals limit. The results obtained in
this work extends the one-dimensional van der Waals equation derived by
Kac et al. (9) to a quasi one-dimensional model. We notice that this is an off-
lattice model with non-nearest neighbour interactions. Strictly speaking, in
the van der Waals limit, when the Kac potential becomes ‘‘infinitely weak
and infinitely long range,’’ the number of neighbours becomes infinite and
the system is effectively ‘‘infinite-dimensional.’’ (10)

2. PARTITION FUNCTION OF THE MODEL SYSTEM

We consider a system of N lipid molecules such that the head groups
are modelled by hard rods of length b laying on a line segment [0, L],
while the alkane chains are modelled by hard tails of length a attached at
one end to the centre of mass of the rods. (6) Thus the ith model molecule is
described by two variables ti and fi, where ti is the position of the centre of
mass of the rod and fi is the orientation angle of the tail with 0 < ti < L
and 0 < fi < fm, where fm denotes a maximum inclination, the tail being
perpendicular to the hard-rod when fi=fm/2. It is precisely because the
description of the molecule requires two variables, rather than one, that we
say the system is quasi one-dimensional.
We now assume that the molecules interact with each other through a

potential energy that is the sum of two terms

Eint(t1f1,..., tNfN)=VSR(t1f1,..., tNfN)+VK(t1,..., tN), (1)
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where VSR denotes the sum of pairwise additive short range nearest neigh-
bour interactions, V(|ti+1−ti |; fi, fi+1). (6) The second term in Eq. (1) is
given by the Kac potential,

VK(t1,..., tN)=−
1
2

C
N

i=1
C
N

j=1, i ] j
ae−c |ti − tj|. (2)

Since we assume all the molecules are identical, then Eint(t1f1,..., tNfN)
and VSR(t1f1,..., tNfN) are symmetric in respect of the variables, tifi,
(i=1, 2,..., N). The symmetry property of Eint allows us to write the
canonical partition function of the system, Z(L, T, N), as an ordered
integral expression, namely

Z(L, T, N)=
1
LN

F
0 [ t1 [ t2 · · · [ tN [ L

dt1 · · ·dtN F
fm

0
df1 · · ·dfN

× e−bVKP i=N−1i=1 e−bV(ti+1 −ti; fi , fi+1), (3)

where T is the temperature, b=1/kBT with the Boltzmann constant kB,
and

L=
2p(2b
(mI)1/2

,

where m, I and ( denote the mass, the moment of inertia and the Planck
constant divided by 2p, respectively.
Further we model the nearest neighbour potential as in ref. 6

V(|ti−ti+1 |; fi, fi+1)=. for t < 0

=u(t; fi, fi+1) for t > 0 (4)

with t=|ti−ti+1 |−b(fi, fi+1) and

u(t; fi, fi+1)=(1−t/b) w(fi, fi+1) for t < b

=0 for t > b. (5)

In Eqs. (4) and (5),

b(fi, fi+1)=b for Case A; b for Case B; b(1+m) for Case C, (6)

w(fi, fi+1)=u1 for Case A; u1−D1 for Case B; u1−D2 for Case C, (7)
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where Case A=[fm/2 > fi, fi+1 > fm/2], Case C=[fm/2 < fi, fi+1 <
fm/2)] and Case B=[otherwise]. The parameter m characterizes the
change in the distance of closest approach, the parameters u1, D1 and D2
determine the strength of the potential u(t; fi, fi+1); see Fig. 2 in ref. 6, but
note that u(t; fi, fi+1) may be either repulsive or attractive depending on
the sign of w.
The isothermal-isobaric partition function Y(T, p, N) may be obtained

from the canonical partition function via a Laplace transfrom, namely

Y(T, p, N)=F
.

0
dL e−sLZ(L, T, N), (8)

where s — bp and p is the pressure of the system.
The idea of using a Laplace transform approach to obtain the equa-

tion-of-state goes back to the work of Takahashi (11) and, later, by van
Hove. (12) It was the latter who has shown that, in the thermodynamic limit,
the problem of solving a Laplace transform, such as Eq. (8), becomes one
of finding the largest eigenvalue of a Fredholm integral equation.
In the next section we shall obtain the equations of state, first when we

restrict ourselves to short range interactions, which allow us to recover the
results of ref. 6, and then using the full potential given by Eq. (1).

3. EQUATION OF STATE

3.1. Short Range Interactions

In the equation yielded by substitution of Eq. (3) with VK=0 into
Eq. (8), (6) introduce the following variables: (6) y1=t1; yj+1=tj+1−tj for
j=1, 2,...N−1; yN+1=L−tN. And using the new variables and integrating
over y1 and yN+1 gives (6)

Y(T, p, N)=
1
LNs2

F
fm

0
df1 · · ·dfN P

i=N−1
i=1 F

.

0
dyi+1e−syi+1e−bV(yj+1; fi, fi+1).

(9)

Now define

K(fi, fi+1; s)=F
.

0
dy e−sy e−bV(y; fi, fi+1), (10)

and Eq. (9) is written as

Y(T, p, N)=
1
LNs2

F
fm

0
df1 · · ·dfN P

i=N−1
i=1 K(fi, fi+1; s). (11)
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In order to calculate Eq. (11) let us consider the Fredholm’s homoge-
nous integral-equation with the kernel K(f1, f2; s),

F
fm

0
df2 K(f1, f2; s) jj(f2)=lj(s) jj(f1), (12)

where ll(s) and jl(f) denote its eigenvalues and eigenfunctions, respec-
tively. The equation of state is given in terms of the maximum eigenvalue
lmax(s) of Eq. (12) as follows (13):

l=−
“

“s
log lmax(s), (s — bp) (13)

where l is the average length of the system per particle. Thus the evaluation
of the equation of state is reduced to that of lmax(s).
We substitute Eq. (4) into Eq. (10), and then use the expression for

K(f1, f2; s) in Eq. (12) to obtain the following matricial equation,

5K(B)
K(C)

K(A)
K(B)
6 5aj
bj
6=2lj(s)

fm
5aj
bj
6 , (14)

where

K(A)=K0(s) f(sb, bu1); K(B)=K0(s) f(sb, b(u1−D1));

K(C)=K0(s) e−sbmf(sb, b(u1−D2)) (15)(15)

with

K0(s)=
e−sb

s
(16)

and

f(x, z)=
xe−z−ze−x

x−z
. (17)

Note that f(x, z) > 0 for x > 0, and that K(A), K(B) and K(C) are posi-
tive for s positive. Moreover, note that in Eq. (12), jj(f)=aj for
0 [ f [ fm/2 and jj(f)=bj for fm/2 [ f [ fm.
From Eq. (14), we obtain

lmax(s)=
fm

2
[K(B)+`K(A) K(C)] — fmK0(s) g(sb), (18)
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where

g(sb) — g(sb; u1, D1, D2, m)

=1
2 [f(sb, b(u1−D1))+e

−sbm/2
`f(sb, bu1) f(sb, b(u1−D2)]. (19)

In Eq. (18), K0(s) and g(sb) are the contributions from the hard-rod
and the tail potentials, respectively. Replacing Eq. (18) into Eq. (13) and
using Eq. (16) we obtain

lg=
1
pg
+1−

“

“pg
log g(pg), (20)

where lg=l/b and pg=sb. This equation agrees with that obtained in
ref. 6 if account is taken of a misprint in their Eq. (3.5) (the term − 1

b(pb−u1)

inside the brackets on the rhs of their Eq. (3.5)) and a replacement in their
Eq. (3.4) (Fij Q Fi[̄, [̄ being not j).

3.2. Long Range Interactions: The Kac Potential

We now turn to the potential energy given by Eq. (1), with VK, the Kac
potential, given by Eq. (2). On account of VK, Eint is not a potential energy
of the nearest neighbour type and the method used in the preceding section
cannot be applied to the present case. Instead we follow Kac et al. (9) by
noting that the Boltzmann factor of VK satisfies the identity

e−bVK=e−Nn/2 F
.

−.
dx1 · · ·dxN e`n ;

N
j=1 xjW(x1)P

j=N−1
j=1 P(xj | xj+1, |tj+1−tj |),

where n=ba,W(x)=e−x
2/2/`2p, and

P(x1 | x2, t)=
1

`2p(1− e−2ct)
exp 1 −(x2−x1e

−ct)2

2(1− e−2ct)
2 for t > 0. (21)

The substitution of the identity above into Eq. (3) gives

Z(L, T, N)=
e−

Nn
2

LN
F
fm

0
df1 · · ·dfN F

.

−.
dx1 · · ·dxN

× e `n ;
N
j=1 xjW(x1) F

0 [ t1 [ t2 · · · [ tN [ L
dt1 · · ·dtN

×P i=N−1i=1 e−bV(ti+1 −ti; fi, fi+1)P(xi | xi+1, ti+1−ti). (22)
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Thus, at the price of introducing N additional variables of integration
(x1,..., xN) the partition function has become a product of nearest neigbour
functions.
We can now proceed as in the preceding section. By defining

K(x1, f1; x2, f2; s)

=F
.

0
dy e−sye−bV(y; f1, f2)e`n (x1+x2)/2=W(x1)

W(x2)
P(x1 | x2, y), (23)

we write the isothermal-isobaric partition function as

Y(T, p, N)=
e−

Nn
2

LNs2
F
fm

0
df1 · · ·dfN F

.

−.
dx1 · · ·dxN e`n (x1+xN)/2

×`W(x1) W(xN)P
i=N−1
i=1 K(xi, fi; xi+1, fi+1; s). (24)

To calculate Eq. (24) we introduce the Fredholm’s homogeneous integral
equation with the kernel K(x1, f1; x2, f2; s) given by Eq. (23)

F
.

−.
dx2 F

fm

0
df2 K(x1, f1; x2, f2; s) j(x2, f2)=l̃(s) j(x1, f1). (25)

We note that this equation is a function of three rather than the two
variables used in the true one-dimensional problem studied by Kac et al. (9)

The equation of state is given in terms of the maximum eigenvalue l̃max(s)
of Eq. (25) as follows in ref. 13:

l=−
“

“s
log l̃max(s), (s — bp). (26)

The calculation of the equation of state is reduced to that of a maximum
eigenvalue. To obtain the maximum eigenvalue, we have to solve Eq. (25).
However, this is only amenable to an analytic solution in the so-called van
der Waals limit, a — a0c, cQ 0. In this limit, Eq. (25) is reduced to Eq. (12).
This we discuss below.
Following Kac et al., (9) let us introduce the following transformation

of variables

x1 — x+g`2/c, x2=y+g`2/c, (27)
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where g is a parameter to be chosen later in such a way that the maximum
eigenvalue is the absolute maximumin in the van der Waals limit. From
Eqs. (21) and (27) we obtain

e `n0c (x1+x2)/2=W(x1)
W(x2)

P(x1 | x2, y)

=e `n0c (x+y)/2= W(x)
W(y)

P(x | y, y)

× exp 1g`2n0−
g2

c
tanh 1cy

2
2−g
2
= 2
c
(x+y) tanh 1cy

2
22 , (28)

where n — n0c. Now note that

lim
cQ 0
P(x | y, y)=d(x−y), lim

cQ 0
tanh 1cy

2
2=cy
2
. (29)

Substituting Eq. (28) into Eq. (23) and using Eq. (29), we obtain

lim
cQ 0
K(x1f1; x2, f2; s)=d(x1−x2) eg`2n0K(f1, f2; s̃ ), (30)

where s̃=s+12 g
2 and K(f1, f2; s̃ ) is defined by Eq. (10).

Substituting Eq. (30) into Eq. (24) and integrating in respect to
x1,..., xN yield

Y(T, p, N)=
e−Nn/2

LNs2
F
fm

0
df1 · · ·dfN P

i=N−1
i=1 K(fi, fi+1; s̃ ) eg`2n0. (31)

On comparing Eq. (31) with Eq. (11), it is clear that the ensuring
discussion to obtain the equation of state parallels that of the preceding
section. Whence, the maximum eigenvalue in the van der Waals limit is
obtained as

l̃max(s)=max
(g)
F(g), (32)

where

F(g)=fmK0(s̃; g) g(s̃b), (33)
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with g(s̃b) defined by Eq. (19) and

K0(s̃; g)=eg`2n0
e−s̃b

s̃
. (34)

In Eq. (32), max(g) means that we choose the value of g so as to make F(g)
an absolute maximum, namely the value of g is obtained from

“

“g
F(g)=0, (35)

which gives

fs(g)=`2n0, (36)

where

fs(g)=11+
1
s̃b
−
“

“s̃ b
log g(s̃b)2 bg. (37)

The equation of state in the van der Waals limit becomes

lg=1+
1
p̃ g−

“

“p̃ g log g(p̃
g) (38)

with

p̃ g=pg+
b
2
g(s)2, (39)

where g(s) is the solution of Eq. (36) corresponding to the absolute
maximum of F(g). Or, with the use of Eqs. (36) amd (37) lg can be
expressed as

lg=
`2n0
bg(s)

. (40)

Equations (38) or (40) is the sought analytic form of the equation of
state. It agrees with the result of Kac et al. (9) when the hard tails contribu-
tion is ignored. Note that, in order to establish a correspondence between
this work and that of Kac et al. (9) we have deliberately adopted a similar
notation.
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Given that our result recovers that of Kac et al., we anticipate, though
we can not prove it, that in agreement with the rigorous results of Lebowitz
and Penrose, (14) our equation of state exhibits at least one phase transition
and one critical point. At present, the only demonstration we can think of
this result is to analyze our equation of state graphically through the
behaviours of fs(g) and F(g).
Note that Eq. (38) is obtained from Eq. (20) with the replacement of

pg in Eq. (20) by p̃ g. From Eqs. (18) and (32) the Helmholtz free energy
density a(pg) is also obtained:

a(pg)=a0(p̃ g)−
1
2b
g(s)2, (41)

where a0 is the free energy density function of the system with no Kac
potential. It is not difficult to show that this effect of the Kac potential in
the van der Waals limit is the one proved more generally by Lebowitz and
Penrose: (14) Eqs. (39) and (40) shows that the replacement above is just the
one of Lebowitz and Penrose. (14)

4. CONCLUSIONS

We have obtained analytical expressions for the equation of state of
model lipid monolayers assuming either purely repulsive or repulsive plus
attractive interactions.
The former case was discussed in an earlier work by Gianotti et al. (6)

However, their result has misprints. If we allow for misprints in Eqs. (3.4)
and (3.5) of ref. 6, their result is esseentially correct.
For the latter we have extended the approach originally discussed in

the work of Kac et al. (9) to our quasi-one dimensional system. In practice
this has meant having to deal with three, rather than two, independent
variables. We have shown that in this case it is also possible to obtain an
analytic solution for the equation of state in the van der Waals limit.
The kernels defined by Eqs. (10) and (23) are not symmetric due to the

hard tail interaction, but we can find an appropriate coordinate system for
the orientational angle of the tail making the kernels symmetric. In the
present case, we used the non-symmetric kernels since the both results
obtained are same and the use gives the result even directly. However, we
believe that the most general treatment does require symmetric kernels.
In the present work only the heads are subjected to attractive interac-

tions. We expect that this system will exhibit at least one phase transition
and critical point that may be associated to the tilt no-tilt transition present
in real monolayers. We are currently studying the possibility of obtaining
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analytic equations of state when attractive forces between the tails are also
introduced in our formalism. However, the angular dependence of these
forces introduce extra degrees of difficulty to the problem that we are
trying to overcome.
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